返回首页

数据化运营思路及分析?

167 2024-06-11 22:25 admin

一、数据化运营思路及分析?

数据化运营是一种通过收集、处理、分析数据,从而发现用户偏好、优化产品服务、提高用户体验和提升企业运营效率的运营方式。

下面是一些数据化运营的思路和分析方法:

1. 数据收集:收集用户的行为数据、用户属性数据、产品使用数据等,方法包括埋点技术、用户调研、问卷调查等。

2. 数据处理:通过数据清洗、数据分类、数据分析等方法,提取有价值的信息,用于后续决策。

3. 数据分析:利用数据分析工具对收集的数据进行分析,得到业务发展趋势、用户偏好、痛点等信息。

4. 用户画像:通过对用户行为和属性数据的分析,建立用户画像,找到不同用户群体的共性和差异性,为精细化运营提供依据。

5. 个性化推荐:基于用户画像和历史数据,进行个性化推荐,提供更准确、更符合用户需求的服务。

6. A/B测试:通过A/B测试方法,对不同策略进行比较,找到更优的运营方式。

7. 数据可视化:通过数据可视化的方式,将分析结果直观、简洁地呈现,便于决策者进行分析和决策。

通过数据化运营,企业能够更好地理解用户需求,提升产品和服务质量,提高用户体验,同时也能够更高效地运营企业,提高效率和收益。

二、网店运营,需要分析哪些数据?

网店运营需要分析的数据有:销量、客单价、访客、访客来源、跳失率、停留时间、入口的搜索关键词、广告投入产出比、淘客转化率、竞争对手销量变化、主要关键词的搜索排名等。

三、保险运营数据分析方法?

1.防止欺诈

很多保险公司已经采用了复杂的数据分析工具。当使用这项技术时,成功检测保险欺诈的数量迅速上升。欺诈性索赔提高了保费成本,并浪费了合法投保者的资源。无论是内部处理还是通过大数据咨询公司处理,快速发现和调查这些案件都很重要。数据分析技术可以通过研究索赔者过去的行为来确定是否倾向于提出虚假声明。大数据服务还可以确定索赔者是否有欺诈前科。

可以采用社交媒体来分析索赔者是否有可能实施欺诈行为。使用预测建模有助于保险代理确定是否拒绝其索赔申请。同样,保险公司可以使用大数据分析服务在支付高额费用之前处理索赔,并通过索赔数据是否存在欺诈行为。例如,索赔者可能在打开车窗之后报警,声称汽车中的物品被盗,其证词可能会被记录以供调查。

2.潜在风险评估

数据分析非常适合进行详细的风险评估。大数据分析应用程序可以在保险政策发布之前确定每个申请者所面临的风险。由于大数据服务产品的功能,保险公司可以下载警方提供的犯罪记录以及社交媒体信息。在采用大数据技术之前,这种数据存储量是无法想象的。

例如投保者并没有犯罪记录,并且想要购买新车保险。在这个案例中可以通过风险评估检查,其中包括汽车的品牌、客户的年龄,以及是否有犯罪记录。

借助大数据分析即服务,保险公司可以获得比以往更多的信息。因此,考虑到了诸如该地区的犯罪率和事故数量及其乘车体验之类的细节。在审批保险单之前,要对风险进行评估,并相应地对保险费用进行估价。

3.简化内部流程

采用有效的大数据分析平台可以简化内部流程。这包括以下方面:

•客户反馈评估;

•检查保险单的销售情况;

•评估客户对销售技巧的反应;

•评估促销的有效性;

•确定哪些保单的索赔额最高。

这些只是随着大数据分析能力的提高而改善的一些情况。

大量的数据可以即时处理,数据分析有助于保险公司管理人员检查其业务中表现良好的领域和其他需要改进的领域的能力。这允许向销售保险产品的员工提供更有意义的反馈,并帮助他们遵守保险产品的统计要求。

4.个性化政策产品

保险行业主要以客户为中心。这意味着其保险政策必须个性化,并根据每个客户的偏好进行调整。客户希望保险代理成为他们值得信赖的顾问,可以帮助他们获得最优惠的折扣。大数据咨询公司或内部资源设计了可以实现灵活客户体验的算法,使这种想法成为可能。数据分析算法有助于保留客户,并预测哪些计划将使哪些客户受益

四、运营方面的工作都要求数据分析能力,到底什么是数据分析?

过去我们所认为的运营方面的工作更多的是维护客户,上架商品,推动业务合理有序的进行,但是当下的运营工作越来越要求具备数据分析的能力,希望运营的同学在日常的工作做到更加精细化的业务运营,推动业务更加高效的进行。

可能习惯了历史运营岗位的同学还是很多疑惑,为什么突然就这么需要数据分析能力,到底什么是数据分析能力呢?

所谓数据分析的能力,并不是什么很神秘和新鲜的能力,在还没有大数据的时候,商业领域的工作更多的是通过个人的经验去推进,但是每个人的经验是不同的,也是不稳定的,一旦出现偏差,可能给公司带来很大的损失,但是数据是最真实的,是不会骗人的, 及时出现了决策偏差也是数据使用的能力不足或者不正确,但是数据可以最真实的体现业务的具体情况,因此,在战略到战术越来越多的需要参考数据做决策。

当高层发现数据的价值越来越重要后,当然也希望公司所有的同事可以更好的参考数据推进业务,尤其是运营同学,如果每个人的运营效率提升1%,全公司的业务效率就会呈现指数形式的增长,这也就是为什么需要数据分析的能力。

具体数据分析的能力有哪些?相信在大数据的今天,很多人也有所耳闻,了解到可能需要会使用excel,会写SQL,有的甚至会写python,或者会写PPT,当然这些也是没错的,只是这些更多的是数据分析的过程中需要具备的一些技能,如果想深入的学习数据分析,还是需要更多的熟悉业务,通过数据去发现业务中的问题,然后分析和解决问题,最终能够帮助公司提升营收或者节约成本,才是最终的目的。如果你还是很迷茫,我有看过知乎搞得数据分析小白课程就很不错,有些免费课程有兴趣的可以薅下羊毛了解下数据分析的基本方法系统学习一下效率更高。知乎请的是前 IBM 数据大佬讲课,结合互联网经典案例,理解起来几乎没有门槛,听完高低能具备相当于阿里 P6 或 P7 级别产品/运营专家的数据理解+数据分析+数据应用能力,并熟知+理解互联网/科技公司内的绝大多数常见数据赋能业务的场景、思路和可能性。

1、运营要做些什么?

如果大家还是很迷惑,不妨通过运营的具体工作来看一下,到底哪些运营环节会重点涉及数据分析。就拿最常见的电商平台商品运营来说,运营日常的工作可能涉及如下环节: ● 制定商品运营策略 ● 上架商品 ● 观察转化 ● 调整商品 ● 复盘 ● 调整商品运营策略以上就是业务运营常见的运营环节,过去都是通过非常粗略的数据以及运营人员对行业的经验进行商品策略调整,但是这样并不能使得价值最大化,因为你没有看到竞对的商品销售情况,也并不能确定每年都是一样的行情,因此在不同的时间不同的商品的策略会有很大的不同。2、和数据分析有哪些关联?

既然运营工作经验无法价值最大化,那通过数据分析就能吗?先不用着急下判断,先看看运营工作实际会和数据分析有哪些关联,再去考虑其它。首先,我们看做爆款商品策略的时候,可能会有多个爆款商品无法决定选择哪一个提供最佳的坑位资源,那你是否要同比去年的情况,同时要对比当前其它爆款的商品销售周期的情况,才能选出当前此刻最佳的爆款商品。其次,当你选好爆款商品后,在售卖的过程中你是否要实时观查销售情况,这个观察肯定不仅仅是销售结果,更应该是从商品上架,到客户浏览、下单、付款、转化整个漏斗转化过程。如果哪个环节有问题可以及时调整。最后,当营销策略活动结束后,必然要进行复盘,对于复盘通过数据说话是最有说服力的,如果是谁出了问题也无法推卸责任。以上就是最常见的运营过程中必然会涉及数据分析的环节,所以业务过程中,运营和数据分析是不可分割的,经验运营的时代早已过去。 3、 数据分析如何赋能运营工作

可见运营和数据分析分不开,那具体要怎么通过数据分析来赋能运营工作呢?这里还是通过大家最常见的漏斗模型来看一下。

以上是最常见的漏斗模型,通过观察漏斗模型的数据,可以做如下事情给运营业务赋能: ● 如果客户选购的商品到购物车环节流失严重,可能有技术选购入购物车异常,可以让技术一起排查一下,也可能商品选择偏差太大,需要及时更换商品资源; ● 如果购物车到结算流失异常严重,也可能会有页面跳转技术问题需要技术排查,同时也可以观察购物车关联的商品哪些比重更高,可以尝试过程中调整关联商品推荐 ● 如果提交订单到支付环节流失异常严重,大概率是支付出现延迟或者异常,也可能是支付的方式太单一,需要及时的推动添加多种支付方式,提高客户的支付率。通过数据可以直观的看到业务环节中的问题,及时的调整运营动作,实时弥补前期的方案不足的地方。最终可以让运营价值最大化,这就是数据分析赋能业务的妙处。这里建议系统学习下数据分析的建模思维,帮你全面的提高数据分析运营效率。我个人推荐知乎知学堂的数据分析入门课程,老师曾是 IBM 的数据分析师,并和阿里、谷歌、滴滴等公司的资深数据专家合作,课程从基础讲起,针对性引入了多达数十个数据应用+实践案例,用案例讲知识点,结合大厂一线业务案例,能够深入浅出的讲明白那些数据分析理论是如何运用在业务里,而且还有实操大厂项目的指导,帮助运营新人更好提升数据应用+实战能力,成为名副其实的「业务数据专家」:

4、如何提高数据分析能力

提高数据分析能力可以通过上述的培训课程会更节约时间,当然也可以自己一点点学习和提高,对于还比较迷茫如何在运营工作总提高数据分析能力的同学,不妨先从技术和分析思维两个方面去学习和打下基础。 ● 技术方面(1)excel基础技能务必熟练,对于运营日常60%的时间可能还是需要通过excel快速的进行数据分析,了解业务变化,因此基本的excel分析技能必然要熟悉。(2)sql学习提高分析能力,对于有些公司运营同学可以用到sql取数分析的可以更好的提高数据分析效率,更全面的了解业务数据情况,快速入门sql可以事半功倍。(3)python学习能力进阶,对于进入数据分析3年的运营同学如果可以学习一下python可以自己独立多一些业务分析项目,自动化可视化的运营自己的业务,可以进阶到独立负责运营分析和落地实践。 ● 思维方面(1)流程优化:可以从运营业务环节中,通过数据优化流程,进一步提升业务效率进行思考,拿业务中的实际案例进行学习。(2)节约资源:通过自动化报表可以快速的降低人力资源,提高人效,也是数据分析中会经常涉及到的。(3)营收提升:通过数据分析找到业务的提升点,逐步提高业务营收,是所有运营或者业务中最重要的, 可以随时通过业务实践思考,提高有落地的数据分析方案思维能力。以上是最常见的技术和思维锻炼的常见点也是关键点。必须在日常的运营工作中进行不断的实践学习才能不断提高。总结

随着商业环境中,对运营工作的效能要求越来越高,必然离不开数据分析的赋能才能达到要求,因此运营同学不妨多了解一些运营数据相关的契合点,逐步的学习和使用数据分析来推动业务的增长和优化。数据分析并不神秘,学会用数据说话,让数据指导业务,帮助业务做决策,让业务价值最大化才是当下的必然趋势。

五、数据运营工作内容?

掌握大数据,然后通过数据对比产生一种好的 高效率的能够挣钱的,或者是便民利民的一些好的模式 造福于社会,提高中国的发展经济 通过数字化模块优化公司运营方式,用数据支撑公司决策,需要通过数据分析用户行为和喜好,比人决定更加客观谨慎,更有依据。

六、运营数据分析包括哪些内容?

1.日流量报表 它统计的是网站每天的访问量(uv),页面的浏览量(pv),跳出率反应的是网站的用户体验情况。根据这些参数的对比,可以发现网站的整体运营情况,以及需要改进的地方。

2.询盘跟进表 它统计的是用户询盘的情况,以及转化成交的数量。通过这个统计数据,可以查看到网站优化的实际效果,也方便查看意向客户跟踪进度。

3.关键词流量数据表 它统计的是每个关键词所带来的流量,通过数据分析,可以挑选出潜力大的关键词,以及剔除无法带来流量的关键词和优化成本较高的词。

4.外链建设记录表 它记录了外链建设的数目,以及每条外链的收录情况

七、数据分析(运营分析方向)和数据分析(产品方向)的区别?

这两个岗位的差别主要有两处,分别是服务的对象不同,和对所需数据的分析和处理方式不同。

下文会详细说说这两处不同的具体表现形式,以及这两个岗位值得注意的相同点。

先说不同:

1.两个岗位所服务的对象是不一样的

数据分析(产品方向)岗位做所的工作,可能80%是围绕着产品展开的,20%是围绕着数据分析技术展开的,它本质上是一个产品工作,它所服务的对象更多是产品内部,是为产品功能服务的。

最典型的例子就是互联网公司常用的各种高大上酷炫的数据看板,以及目前沿海城市相对比较普及的智慧城市大脑,本质上也是一个数据分析(产品方向)的工作成果。

如下图展示的就是北京朝阳区的智慧城市大脑工作图,它的本质就是一个深度应用数据分析功能的,用于提升城市现代化治理能力和城市竞争力的新型基础设施产品。

数据分析(运营方向)岗位,做所的工作,可能80%是围绕着运营展开的,20%是围绕着数据分析展开的,它的本质还是一个运营工作。它关注的是各种企业运营活动产生的外部数据,更多是为公司的营销及市场前端策略服务的。

最典型的就是618、双十一的各种运营活动,究竟在什么时间段采取什么样的策略,怎么发放优惠券和拼单优惠组合,这些都是数据运营需要考虑的。

2.两个岗位对数据的思考和处理方式也是不一样的

我们以618大促作为例子:

数据分析(产品方向)岗位员工的工作强度和工作重点更多会在前期的筹备和设计阶段:

他们需要考虑,后台的数据看板需要展示哪些数据,例如日销售额、日成单量、日退单量、单日利润分析、投放引流数据等维度的数据是放在一级、二级还是三级界面展示?不同的部门数据看板的数据权限如何?

他们优先考虑规则,然后根据规则来制定数据分析的框架、数据来源和数据分析标准。

等大促真的开始之后,他们的工作反而告一段落,只需要保障自己的产品稳定运行,不会被暴起的流量冲垮崩溃就行。

数据分析(运营方向)岗位员工的工作强度则会在大促即将开始的时候加码,在大促开始之后来到顶峰:

他们不用考虑数据展示和数据来源抽取等技术性问题。他们考虑的会更加接地气,更加贴近客户和用户,更关心用户和客户的行为转化效果。

比如,大促前的拉新促活活动效果怎么样?目前发放的优惠券和满减政策,导致了多少主推商品被加入到购物车?网页内各项商品的点击量和收藏量如何?

活动开始后,数据分析(运营方向)岗位的员工还要紧密盯着每小时运营数据的变化,分析各项红包使用率、主播直播效果、热门商品排名、加购率和下单率等与销售额紧密相关的指标。通过随时调整销售策略,进行红包发放、价格调整、用户推送消息等方式提升业绩。

这里能够看到,不管是产品方向还是运营方向的岗位,想要做精,都离不开数据分析的技术功底做支撑。

这两个岗位都需要深入了解业务流程、熟练掌握数据分析工具的应用、有较高的数据敏感度,并能针对数据分析结果提供针对性的合理化建议(面向产品或面向营销)。

业务流程可以通过自学掌握;数据敏感度可以通过工作积累和刻意练习来培养;

但数据分析能力是需要通过系统性的学习才能有比较好的效果。

有志于往数据分析方向深入发展的同学,建议一方面熟悉掌握公司内部的业务流程,一方面给自己充充电,系统性的学习一下数据分析相关的知识。

这一块的专业教学,推荐知乎知学堂官方的数据分析实战课程,可以先用1毛钱的价格实际感受和体验一下课程的质量,觉得对自己工作有帮助有启发再正式购买:

3.总结

数据分析(产品方向)岗位的本质是打造产品,是为产品的功能服务的,且做的产品更多是围绕数据看板、数据平台等数据型的产品展开的。

数据分析(运营方向)岗位的本质是运营,是为市场和销售策略服务的。

再说说相同点:

这两个岗位虽然前期工作内容不同,往上晋升之路却殊途同归,都会是同一个岗位——数据分析师。

相较数据运营更加侧重于前端市场,数据产品更加侧重于后台研发,数据分析师是介于连接业务和技术之间的职位。

它得是运营人才里最懂产品的,产品人才里最懂运营的。

数据分析师的工作会涉及到大量的数据提取,数据清洗和数据多维度分析等工作,还需要根据数据的趋势预测给出产品、运营乃至公司战略上的策略建议。

从各方面评估,这都将是个高薪、高压、高挑战和高回报的岗位。

针对这样的岗位,自己的努力是不够的,需要通过体系化的学习“走捷径”。

同时,如果能在数据运营或数据产品岗位方向,就把数据分析的整体思维框架底子打好,做到熟练掌握Excel、SQL、Python、BI等数据分析工具,也可以在晋升时快人一步——这些内容在上述的知学堂官方数据分析实战课程里也有系统化的实战教学,这也是推荐学习的原因。

以上。

希望能给你带来帮助。

八、网店运营需要分析哪些数据?

网店运营需要分析哪些数据?直接把整理的网店运营数据分析体系分享给你。

一、电商的数据分析应该围绕什么指标展开?

拿出经典的“人货场”指标体系图,电商分析基本上也是围绕这三者展开。

人:在电商分析中基本上就是指用户数据,如客单价、会员增长率等

货:商品数据,如采购、库存、销量,售后数据等

场:这个包含的东西比较多,我认为凡是能将人与货匹配,最终完成转化的都可以称之为场。

二、电商数据如何获取?

这里要注意的是,任何数据都是要关注长期的,只看其中一天的数据是完全没有意义的。对于电商数据来说,更是这样了,我这边建议大家拆分看,分成两个时期:促销期和日常期,分析这两个阶段的数据就可以了。还有提醒一句,如果样本数据不够,完全可以扩大样本数量,不然会存在数据不准确而带来的误差。

促销期:618,双11,双12,年中大促,年底大促等

平常期:这个就随便取了

再给大家分享一些获取数据的网站:

三、电商分析的模型有哪些?

RMF分析:数据分析初学者必备!10分钟搭建RFM客户价值模型,一学就会

帕累托/ABC分析:能解决90%难题的数据模型——手把手教你学会帕累托模型

更多分析方法,查看年终盘点 |15种最常用的数据分析方法和模型,赶紧收藏起来吃灰

四、电商分析的过程是什么?

这里我结合零售电商的案例,跟大家分享一些如何进行电商平台数据分析。 分析思路如下:

a、场的维度:通过季销售趋势图及环比,还有各州金额分布分析了解平台销售走势和销售分布,了解平台销售是否健康及销售重点区域。

b、货的维度:通过帕累托分析品类销售情况,散点图探究品类宽度和销售关系,再通过价格带分析,了解平台产品定位。通过评价占比了解产品满意情况,通过产品完整性分析验证猜测。

c、人的分析:分析平台会员走势了解平台会员健康情况,通过地图分布了解会员分布情况,通过AARRR模型了解会员转化率,通过环形图了解新老会员销售情况。利用RFM模型给会员分层并确定重要价值客户分布。利用会员行为分析了解会员下单时间,付费方式和平均付款时间,还知道会员低分占比及评论时间趋向。

d、其他分析-物流分析:其他分析:通过物流准时度分析,物流时间占订单时间分析,平均物流天数分析,物流运费金额在总金额的占比,来评估顾客物流服务投入产出比,通过低评的非准时占比和物流时间来验证猜测。

e、就以上结论和现象进行相关改善建议

五、电商分析的工具有哪些?

如果想仔细学习数据分析工具的,可以看这篇文章:2021年最强数据分析工具盘点!想转行跳槽的小白赶紧收藏

  • Excel:vlookup,数据透视表,数组,sumifs,等常用的公式
  • SQL:增删改查、联合
  • Python:进行数据清洗,数据抽取等
  • FineBI:进行数据图表,可视化,数据报告部分,简单的数据清洗也可以做到

作电商运营分析,其实Excel和Fine BI就够了,中间两个在进阶中才需要学。如果数据不是很多,直接用Excel,我这边不多介绍怎么用了。如果数据量比较大,那就用Fine BI,这个工具比Excel更方便一些。两个结合起来用也是可以的,把Excel文件导入到Fine BI就行。

上面的案例就是用Fine BI制作而成的,下面简单给大家介绍一下这个工具↓↓↓

FineBI

制作过程简单:

模板demo数量丰富:

包含零售、建筑、银行、互联网、医药、制造、交通、物流等几十个分析场景,直接另存为分析模板使用。

九、运营数据分析的必要条件?

1.运营一般要有经验的,最好是有起量经验的。专业、学|历、年龄啥的,没太多要求。像大的厂,可能会卡90后、本科;小的只要能带|户,不愁没坑儿。

2.数据分析,要求高很多,像我自己招一般只要名校硕士。这里的数据分析,指的是能写代码的。拉个Excel制表看数儿,运营都天天干了。数据分析现在也特抢手,比如用增、市|场、战|略或策略部门,一切决策来自数据嘛。

十、拼多多的数据运营要怎么分析?

  

1、分析类目坑产(普遍成交金额)、客单价、竞争环境、产品成本,找到一个合适你的类目。  

2、根据目标做好产品规划以及上架优化,通过优化达到成交最大化。  

3、选择投入最小,获得最高产出的产品,通过搜索、场景、多多进宝等进行推广引流(付费)。  

4、紧跟活动款脚步,最大限度蹭流量,比如秒杀9.9、爱逛街、品牌清仓等。  

5、记录产品数据,根据数据分析,找出不足的地方。如果产品成交不行就重新规划进行优化,如果是流量不行就推广引流或者参加活动,通过这种循环的优化推广,反思店铺诊断,不停的提高产品利润,一直达到满意的标准。  

6、售后+客户管理。提高客户粘度,降低推广拉新客户的广告。  盲目的选择类目,在开始的阶段就不可能找到好操作的地方,因为它不一定合适你现有的条件。  那么怎么选择一个合适的类目呢?  a、类目成交金额,同款竞争条件,自身货源优势。成交金额在电商里面对排名权重的影响是非常大的,想要一个好的产品必须要达到优秀的同款产品现在的成交金额,所以你有多少钱就要选择多少金额的类目去操作。

顶一下
(0)
0%
踩一下
(0)
0%
相关评论
我要评论
用户名: 验证码:点击我更换图片